Rapid whole-cell sensing chip for low-level arsenite detection.
نویسندگان
چکیده
A novel whole-cell sensing chip system consisted of a micro-concentrator, a set of electrochemical detection electrodes, and a microfluidic channel was developed for rapid detection of arsenite in water. Firstly, the E. coli cells transformed with arsenited-regulated reporter plasmids were incubated with solution contained arsenite. Under this condition, the level of reporter protein, β-galactosidase, expressed by E. coli cells is dependent on the concentration of arsenite. Using the dielectrophoretic force, the micro-concentrator continuously enriched the E. coli cells into a small area above the embedded detection electrodes. And then the relative expression levels of β-galactosidase were obtained using the electrochemical method to measure the amount of p-aminophenol (PAP) which converted from the p-aminophenyl-β-D-galactopyranoside (PAPG) by β-galactosidase. From the result, it indicates this device can detect as low as 0.1 ppm of arsenite within 30 min. Compared with other traditional detection methods, our new device provides better performance like higher sensitivity, shorter analysis time, and lower cost in detecting the arsenite.
منابع مشابه
Design and application of a bioluminescent biosensor for detection of toxicity using Huh7-CMV-luc cell line
Cell-based biosensors (CBBs) are becoming important tools for biosecurity applications and rapid diagnostics in food microbiology for their unique capability of detecting hazardous materials. Pollutants, such as heavy metals and chemicals, are now considered as a global threat and are associated with detrimental health outcomes. Fast and accurate detection of pollutants is essential to reduce t...
متن کاملDesign and application of a bioluminescent biosensor for detection of toxicity using Huh7-CMV-luc cell line
Cell-based biosensors (CBBs) are becoming important tools for biosecurity applications and rapid diagnostics in food microbiology for their unique capability of detecting hazardous materials. Pollutants, such as heavy metals and chemicals, are now considered as a global threat and are associated with detrimental health outcomes. Fast and accurate detection of pollutants is essential to reduce t...
متن کاملA vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells.
A novel vertically aligned carbon nanotube based electrical cell impedance sensing biosensor (CNT-ECIS) was demonstrated for the first time as a more rapid, sensitive and specific device for the detection of cancer cells. This biosensor is based on the fast entrapment of cancer cells on vertically aligned carbon nanotube arrays and leads to mechanical and electrical interactions between CNT tip...
متن کاملبررسی تاثیر ویتامین E بر تمایز آزمایشگاهی سلولهای بنیادی مزانشیم مغز استخوان رت بالغ به استئوبلاست طی تیمار همزمان با سدیم آرسنیت
Introduction & Objective: Sodium arsenite disturbs the differentiation of adult rat bone marrow mesenchymal stem cells (rMSCs) to Osteoblast through oxidative stress. We aimed to investigate the preventive effect of vitamin E, a strong antioxidant, in sodium arsenite toxicity on rMSCs differentiation to osteoblast. Materials & Methods: rMSCs were cultured in Dulbecco’s Modified Eagles Medium...
متن کاملElectrochemical As(III) whole-cell based biochip sensor.
The development of a whole-cell based sensor for arsenite detection coupling biological engineering and electrochemical techniques is presented. This strategy takes advantage of the natural Escherichia coli resistance mechanism against toxic arsenic species, such as arsenite, which consists of the selective intracellular recognition of arsenite and its pumping out from the cell. A whole-cell ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biosensors & bioelectronics
دوره 26 5 شماره
صفحات -
تاریخ انتشار 2011